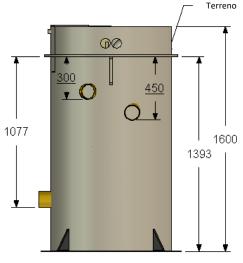


Pluto

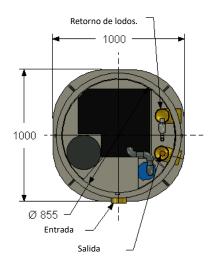
Descripción del producto

Los sistemas Pluto de BioKube son pequeñas plantas de tratamiento de aguas residuales diseñadas para tratar las aguas residuales de hogares o parcelas.

Estas se instalan típicamente después de una fosa séptica, ya sea enterrada o sobre nivel.



Sistema Pluto instalado en una casa familiar


Dimensiones & Ubicación de Tuberias

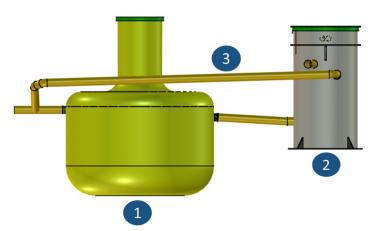
Vista Lateral

Vista Superior

Especificaciones Sistema Pluto					
Altura(mm)	1.600				
Diámetro (mm)	1.000				
Peso (kg)	180				
Peso con agua (kg)	1.000				
Consumo de energía (kwh/año)	350				
Capacidad de pozo de bombas (L)	40				
Material del contenedor	PP				
Material de las cañerías	PVC				
Diámetro cañería para retorno de lodos (mm)	110/110				
Capacidad (L/día)	625-900				
Capacidad (Cantidad de Personas - PE)*	5				

^{* 1} PE = 60g BOD, 13 g Ntotal, y 2,5 g Ptotal, 125-180 L/día

Unidad de Control BioKube E-IV


Todos los componentes eléctricos de la unidad Pluto, por ejemplo, los sopladores, las bombas, las unidades UV, están integrados y conectados a la unidad de control del BioKube E-IV, desde donde se distribuye y controla la energía.

La unidad de control se coloca en un cubículo de control interno (Ver Figura).

La planta se alimenta normalmente con una fuente de alimentación de 230 voltios y una fase.

La corriente máxima es de 2,5 A dependiendo del número y tamaño de los componentes instalados.

Principios de la Instalación del Sistema.

Componentes de la Instalación

Los sistemas Pluto suelen instalarse enterradas después de una fosa séptica. La fosa séptica debe ser suministrada localmente. También, puede ser construida de concreto in situ.

- Estanque Séptico.
- Planta de tratamiento modelo Pluto.
- Tubería retorno de lodos.

Para mas información vea el manual de instalación.

Principios de la Construcción - Rellenos

Capa de nivelación min 100 mm

100 mm gravilla

Rellenos

El sistema requiere ser instalado en una superficie plana y compactada (por ejemplo, una capa de grava).

Cuando se rellena, se debe colocar una capa de 100 mm de gravilla alrededor de la planta.

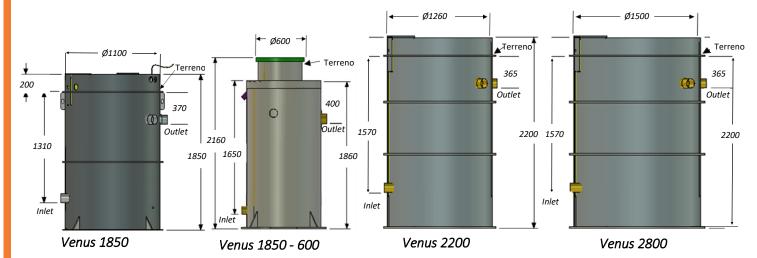
La planta Pluto también puede instalarse sobre el suelo sin ningún equipo adicional.

Para mas información vea el manual de instalación.

Venus

Descripcion del Producto

Los sistemas Venus de BioKube, son pequeñas plantas de tratamiento de aguas residuales diseñadas para tratar las aguas residuales de un grupo de hogares o grandes parcelas.


Estas se instalan típicamente después de una fosa séptica, ya sea enterrada o sobre nivel.

Pasos Integrados del Tratamiento Estanque Séptico Regulación Biozona Clarificador

Sistema Venus instalado en un grupo de casas.

Dimensiones & Ubicación de Tuberias

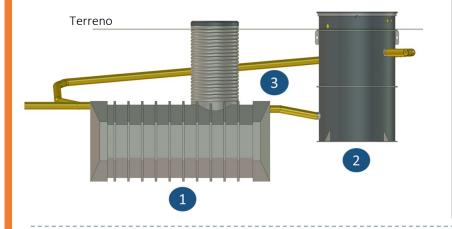
	Venus 1850	Venus 1850 small lid	Venus 2200	Venus 2800
Altura (mm)	1.850	2.160	2.160	2.220
Diámetro (mm)	1.100	600/1.010	1.260	1.500
Peso (kg)	220	200	295	450
Consumo de energía. (kwh/año)	400	400	700	1.400
Capacidad de pozo de bombas (L)	300	300	300	500
Material del contenedor	PP	PP	PP	PP
Material de las cañerías	PVC	PVC	PVC	PVC
Diám. cañ. retorno de lodos (mm)	110/110	110/110	110/110	110/110
Capacidad (PE*) efluente clase normal**	10 PE	10 PE	20 PE	40 PE
Capacidad (PE*) efluente clase alta***	5 PE	5 PE	10 PE	20 PE
Capacidad (m³/día) efluente clase normal**	1,5 m³	1,5 m³	3,0 m³	4,5 m³
Capacidad (m³/día) efluente clase alta***	0,75 m³	0,75 m³	1,5 m³	2,25m³
Cap. est. séptico efluente clase normal****	≥ 3,75 m³	≥ 3,75 m³	≥ 6,0 m³	≥ 12 m³
Cap. est. séptico efluente clase alta****	≥ 2,0 m³	≥ 2,0 m³	≥ 3,75 m³	≥ 6,0 m³

^{*1} PE = 60g BOD, 12 g N-total, 2,5 g P-total, 150 L/día por persona.

^{**}Efluente Clase Normal: BOD < 25 mg/litro

^{***}Efluente Clase Alta: BOD < 10 mg/litro, NH4 < 5 mg/litro, 50 % TN reducción.

^{****} Basado en un vaciado anual de lodo. Se pueden utilizar fosas sépticas mas pequeñas si se realiza un vaciado de lodos más frecuente.

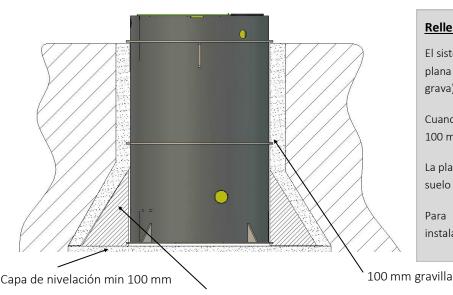

Unidad de Control BioKube E-IV

Todos los componentes eléctricos de la unidad Venus, por ejemplo, los sopladores, las bombas, las unidades UV, están integrados y conectados a la unidad de control del BioKube E-IV, desde donde se distribuye y controla la energía.

La unidad de control se coloca en un cubículo de control interno (vea la imagen). La planta se alimenta normalmente con una fuente de alimentación de 230 voltios y una fase.

La corriente máxima es de 2.5 Amperios dependiendo del número y tamaño de los componentes instalados.

Principios de la Instalación del Sistema.



Componentes de la Instalación

Los sistemas Venus suelen instalarse enterradas después de una fosa séptica. La fosa séptica debe ser suministrada localmente por uno de los muchos proveedores estándares. Alternativamente, puede ser construida de concreto in situ.

- Estanque Séptico.
- Planta de tratamiento modelo Venus.
- Tubería retorno de lodos.

Principios de la Construcción - Rellenos

Rellenos

El sistema requiere ser instalado en una superficie plana y compactada (por ejemplo, una capa de grava).

Cuando se rellena, se debe colocar una capa de 100 mm de gravilla alrededor de la planta.

La planta Venus también puede instalarse sobre el suelo sin ningún equipo adicional.

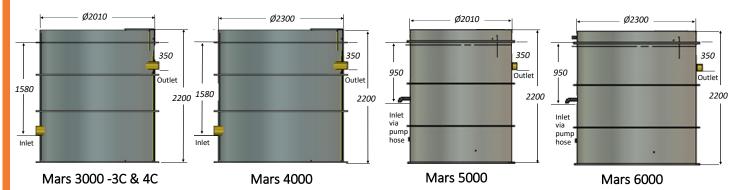
Para mas información vea el manual de instalación.

Anclaje de hormigón es opcional para controlar la flotabilidad.

(Solo para modelo Venus 2200 & 2800)

Mars

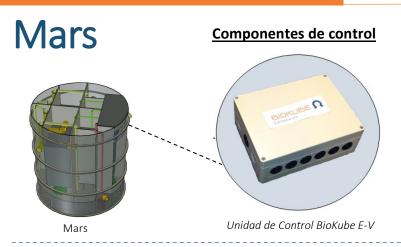
Descripcion del Producto


Los sistemas Mars son pequeñas plantas de tratamiento de aguas residuales diseñadas para grupos de hogares o grandes parcelas que tratan hasta 30 m³ por día. Estas se instalan típicamente después de una fosa séptica, ya sea enterrada o sobre nivel.

Dimensiones & Ubicación de Tuberias

Sistema Mars instalado en un colegio

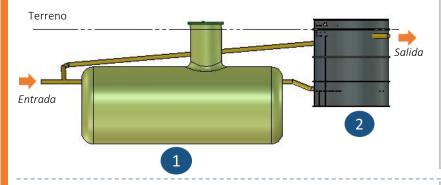
Sistema Mars	3000-3C	3000-4C	4000	5000	6000
Altura(mm)	2.220	2.220	2.220	2.220	2.220
Diámetro (mm)	2.010	2.010	2.300	2.010	2.300
Peso (kg)	570	590	700	630	700
Peso con agua (kg)	5.970	5.990	7.350	5.990	7.350
Power consumption (kwh/año)	2.400	3.100	5.200	2.650	4.190
Pozo de regulación integrado / pozo bomba	Si****	Si****	Si	No	No
Capacidad de pozo de bomba (L)	1.200	1.200	1.600	NA	NA
Numero de sopladores (unidades)	3	4	4	1	2
Material del contenedor	Polipropileno	Polipropileno	Polipropileno	Polipropileno	Polipropileno
Material de las cañerías	PVC	PVC	PVC	PVC	PVC
Diam. cañ. para retorno de lodos (mm)	110	110	110	110	110
Capacidad (PE) efluente clase baja**	55 PE	60 PE	80 PE	90 PE	120 PE
Capacidad (PE) Efluente clase alta*	30 PE	40 PE	60 PE	NA	NA
Capacidad (m³/día) Efluente clase baja**	8,25 m³	9,00 m³	12,00 m³	13,50 m³	18,00 m³
Capacidad (m³/día) Efluente clase alta*	4,50 m³	6,00 m³	9,00 m³	NA	NA
Cap. est. séptico efluente clase baja*	≥ 8,25 m³	≥ 9,00 m³	≥ 12,00 m³	≥ 13,50 m³	≥ 18,00 m³
Cap. est. séptico efluente clase alta*	≥ 4,50 m³	≥ 6,00 m³	≥ 9,00 m³	NA	NA


^{* 1} PE = 60g BOD, 12 g N-total, 2.5 g P-total, 150 Litros/día por persona.

^{**} Efluente Clase baja: BOD < 25 mg/liter

^{***} Efluente Clase Alta: BOD < 10 mg/liter, NH4 < 5 mg/liter, 50 % TN reducción.

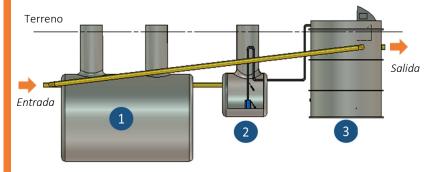
^{****} Disponible sin estanque de regulación como Mars 2000, bajo requerimiento.



Unidad de Control BioKube E-IV

Todos los componentes eléctricos de la unidad Mars, por ejemplo, sopladores, bombas, unidades UV, están integrados y conectados a la unidad de control del BioKube E-V, desde donde se distribuye y controla la energía. La unidad de control se coloca en un cubículo de control interno (vea la imagen). La planta se alimenta normalmente con una fuente de 230 voltios y una fase. La corriente máxima es de 2,5 A dependiendo del número y tamaño de los componentes instalados.

Principios de la Instalación Mars 3000 & 4000

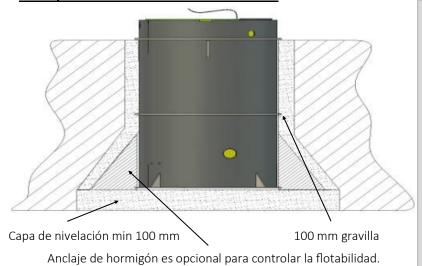


Componentes de la Instalación

Los sistemas Mars 3000 & 4000 suelen instalarse enterrados después de una fosa séptica. Esta debe ser suministrada localmente por uno de los muchos proveedores estándares. Alternativamente, puede ser construida de concreto in situ.

- 1 Estanque Séptico.
- 2 Mars 3000 o 4000.

Principios de la Instalación Mars 5000 & 6000



Componentes de la Instalación

Los sistemas Mars 5000 & 6000 suelen instalarse enterrados después de una fosa séptica y de un estanque de regulación. Pueden ser suministrados localmente o ser construidos de concreto in situ.

- 1 Estanque Séptico.
- 2 Estanque de regulación.
- 3 Mars 5000 o 6000.

Principios de la Construcción - Rellenos

Rellenos

El sistema requiere ser instalado en una superficie plana y compactada (por ejemplo, una capa de grava).

Cuando se rellena, se debe colocar una capa de 100 mm de gravilla alrededor de la planta.

En caso de altos niveles de napas, se recomienda un anclaje de hormigón para controlar la flotabilidad.

La planta Mars también puede instalarse sobre el suelo sin ningún equipo adicional.

Para mas información vea el manual de instalación.